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Abstract. Logic Tensor Networks provide a well-founded integration of deduc-
tive reasoning and relational learning using first-order logic. Logical constants
are interpreted as feature vectors of real numbers, logical formulas have truth-
value in the interval [0,1] and semantics defined in the domain of real numbers,
all implemented in deep tensor neural networks with the use of Google’s TEN-
SORFLOWTM. Keywords: Knowledge Representation, Relational Learning, Ten-
sor Networks, Neural-Symbolic Computing, Knowledge Completion.

1 Introduction

The recent availability of large-scale data combining multiple modalities, such as im-
age, text and audio, has opened various research and commercial opportunities, under-
pinned by machine learning methods and techniques [1, 7]. Recent work in machine
learning has sought to combine logical services, such as knowledge completion, ap-
proximate inference, and goal-directed reasoning with data-driven statistical and neural
network-based approaches. We argue that there are great possibilities for improving the
current state of the art in machine learning and artificial intelligence (AI) thought the
principled combination of knowledge representation, reasoning and learning [9].

Logic Tensor Networks (LTN) integrate learning based on tensor networks [10] with
reasoning using first-order many-valued logic [2], all implemented in TENSORFLOWTM

[6]. This enables a range of knowledge-based tasks using rich symbolic knowledge rep-
resentation in first-order logic (FOL) to be combined with efficient data-driven machine
learning based on the manipulation of real-valued vectors. In practice, FOL reasoning
including function symbols is approximated through the usual iterative deepening of
clause depth. Given data available in the form of real-valued vectors, logical soft and
hard constraints and relations which apply to certain subsets of the vectors can be spec-
ified compactly in FOL. With the use of Real Logic and learning as approximate satis-
fiability, reasoning can help improve learning, and learning from new data may revise
the constraints thus modifying reasoning.

2 Real Logic

An agent has to manage knowledge about an unbounded, possibly infinite, set of ob-
jects O = {o1, o2, . . . }. Some of the objects are associated with a set of quantitative
attributes, represented by an n-tuple of real values G(oi) ∈ Rn, which we call ground-
ing. For example, a person may have a grounding into a 4-tuple containing some nu-
merical representation of the person’s name, height, weight, and number of friends in
some social network. The same person may have a different grounding in a different
context, and two or more people may have very similar groundings within a context. It



is this similarity that can be explored by the tensor networks for learning, subject to the
constraints given by the logical relations. It is also possible that some of the attributes of
an object (in the above example, a person) are unknown or missing. Object tuples can
participate in a set of relations R = {R1, . . . , Rk}, with Ri ⊆ Oα(Ri), where α(Ri)
denotes the arity of relation Ri. We presuppose the existence of a latent (unknown)
relation between the above numerical properties, i.e. groundings, and partial relational
structureR on O. Starting from this partial knowledge, an agent is required to: (i) infer
new knowledge about the relational structure on the objects ofO; (ii) predict the numer-
ical properties or the class of the objects in O. Classes and relations are not normally
independent. For example, it may be the case that if an object x is of class C, C(x), and
it is related to another object y through relation R(x, y) then this other object y should
be in the same class C(y). In logic: ∀x∃y((C(x) ∧R(x, y))→ C(y)). Whether or not
C(y) holds will depend on the application: through reasoning, one may derive C(y)
where otherwise there might not have been evidence of C(y) from training examples
only; through learning, one may need to revise such a conclusion C(y) once examples
to the contrary become available. The vectorial representation permits both reasoning
and learning as exemplified above and detailed in the next section.

The above forms of reasoning and learning are integrated in a unifying framework,
implemented within tensor networks, and exemplified in relational domains combining
data and relational knowledge about the objects in [9]. It is expected that, through an
adequate integration of numerical properties and relational knowledge, differently from
the immediate related literature [5, 3], LTNs will be capable of combining in an effective
way first-order logical inference on open domains with efficient relational multi-class
learning using tensor networks.

3 Learning as approximate satisfiability
Suppose that O = {o1, o2, o3} is a set of documents defined on a finite dictionary D =
{w1, ..., wn} of nwords. LetL be the language that contains the binary function symbol
concat(x, y) denoting the document resulting from the concatenation of documents x
and y. Let L contain also the binary predicate Sim which is supposed to be true if
document x is deemed to be similar to document y. An example of grounding is the one
that associates to each document its bag-of-words vector [4].

To check satisfiability on a subset of all the functions on real numbers, recall that
a grounding should capture a latent correlation between the quantitative attributes of
an object and its relational properties. For example, whether a document is to be clas-
sified as from being in the field of Artificial Intelligence (AI) depends on its bag-of-
words grounding. If the language L contains the unary predicate AI(x) standing for
“x is a paper about AI” then the grounding of AI(x), which is a function from bag-of-
words vectors to [0,1], should assign values close to 1 to the vectors which are close
semantically toAI . Furthermore, if two vectors are similar (e.g. according to the cosine
similarity measure) then their grounding should be similar.

When a grounded theory is inconsitent, that is, there is no grounding G that satisfies
it, we are interested in finding a grounding which satisfies as much as possible of it. For
any formula and real number interval, this is a grounding G that minimizes a satisfiabil-
ity error: an error occurs when a grounding G assigns a value G(φ) to a clause φ which
is outside the interval [v, w] prescribed by knowledge-base K.



LTNs were implemented as a Python library called ltn using Google’s TENSOR-
FLOWTM. To illustrate knowledge completion in ltn, the well-known friends and smok-
ers example [8] was used in [9]. Normally, a probabilistic approach is taken to solve this
problem, and one that requires instantiating all clauses to remove variables, essentially
turning the problem into a propositional one; ltn takes a different approach.

The facts contained in the friends and smokers knowledge-base (K) should have
different degrees of truth, and this is not known. Otherwise, K would be inconsistent.
Our main task is to complete K, that is, find the degree of truth of the facts. Hence, we
use ltn to find a grounding that best approximates K. Results show that more facts
can be learned with the inclusion of background knowledge than through reasoning
alone. Similarly, using the symmetry of the friendship relation, ltn derives new facts
through reasoning. The axioms in the background knowledge are satisfied with a degree
of satisfiability higher than 90%.

4 Conclusion and future work

We have proposed Real Logic and the use of approximate satisfiability as a uniform
framework for the integration of learning and reasoning, whereby knowledge and data
are mapped onto real-valued vectors. With such an inference-as-learning approach, re-
lational knowledge and state-of-the-art data-driven approaches can be combined. We
are in the process of making the implementation of LTN available in TENSORFLOWTM

to enable comparisons with statistical relational learning, neural-symbolic computing,
and (probabilistic) inductive logic programming approaches.
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