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Abstract. Over the last two decades there has been a growing interest
in Inductive Logic Programming (ILP) [8], where the goal is to learn
a logic program called a hypothesis, which together with a given back-
ground knowledge, explains a set of examples. The main advantage that
ILP has over traditional statistical machine learning approaches is that
the learned hypotheses can be easily expressed into plain English and
explained to a human user, so facilitating a closer interaction between
humans and machine. Although ILP has traditionally addressed the task
of learning definite logic programs [9] (with no negation), our own recent
ILP systems [2, 1, 4] have extended the field to learning under the answer
set programming (ASP) semantics [3]. ASP programs are truly declar-
ative. They allow additional constructs such as choice rules, hard and
weak constraints, and support for non-monotonic inference. Choice rules
and weak constraints are particularly useful for modelling human prefer-
ences, as the choice rules can represent the choices available to the user,
and the weak constraints can specify which choices a human prefers.
Our most recent system, ILASP [6], supports learning ASP programs
with normal rules, choice rules, hard constraints and weak constraints.

1 The role of non-monotonic inductive learning

Non-monotonicity permits incremental learning, allowing the machine to peri-
odically revise rules and knowledge learnt, as examples of user behaviours are
continuously observed. The non-monotonicity property is particularly relevant
in pervasive computing, where systems are expected to autonomously adapt to
changes in user context and behaviour, whilst operating seamlessly with minimal
user intervention. We have used our non-monotonic learning system, ASPAL [2],
in mobile privacy [7], and enabled devices to learn and revise user’s models from
sensory input and user actions (e.g. user’s actions on mobile devices). The learned
models are accessed by mobile applications to determine automatic responses to
events or requests, e.g., “if the user would allow access to his/her current lo-
cation”. The declarative representation of these models makes the system also
capable of explaining its automatic responses to human users, and providing way
for users to understand and amend what has been learnt.
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2 An example: learning human preferences

More recently, we have extended our ILASP [5] system1 to learn weak con-
straints, which can be used to represent human-readable preferences. We used
ILASP to learn route selection preferences from examples of which routes a
user prefers to other routes [6]. A journey was encoded as a set of attributes
of the legs of the journey; for example the journey {distance(leg(1), 2000),
distance(leg(2), 100), mode(leg(1), bus), mode(leg(2), walk)} has two legs; in
the first leg, the person must take a bus for 2000m and in the second, he/she
must walk 100m.

For example, consider the following set of weak constraints:

WS =

 :∼ mode(L, walk), crime rating(L, R), R > 3.[1@3, L, R]
:∼ mode(L, bus).[1@2, L]
:∼ mode(L, walk), distance(L, D).[D@1, L, D]

Using synthetically generated examples of partially ordered journeys, ILASP
is able to learn the weak constraints WS, which reflect the human preferences:

1. The user would like to avoid walking through an area with a

high crime rating;

2. The user would like to minimise the number of buses taken;

3. The user would like to minimise the total distance walked.

Note that ILASP also learns the priorities of the preferences (@3, @2 and @1

for the weak constraints in WS). These priorities indicate which preferences are
considered to be more important by the user, with higher numbers reflecting
higher importance.

Figure 1 shows the average accuracy of ILASP2i (our most recent system)
on over 1000 journeys, with varying numbers of training examples. The average
accuracy measures the proportion of pairs of journeys that ILASP2i orders cor-
rectly. With only 40 training examples of pairs 〈j1, j2〉 such that j1 is prefered
to j2, ILASP2i averages over 88%. This average accuracy increases to 93% when
some of the training example pairs are such that j1 is equally prefered to j2.

3 Closing Remarks

These recent theoretical and practical advances in ILP demonstrate how ma-
chines can be empowered with human-like reasoning and learning abilities needed
to maintain collaboration and communication with human users. At the same
time their ability to combine declarative and optimisation inference within the
learning process, may open up opportunities for exploring new ways of integrat-
ing quantitative and symbolic approaches to machine learning.

1 For instructions on how to download and use ILASP see
http://www.doc.ic.ac.uk/~ml1909/ILASP
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Fig. 1: average accuracy of ILASP2i
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